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Introduction
A popular saying is “Learn to walk before 
you run”. We could expand this to “Learn 
to crawl before you learn to walk before 
you learn to run before you learn to 
sprint”. When it comes to regression anal-
ysis we have to admit that this column 
has spent rather more time on Partial 
Least Squares (PLS) than on Principal 
Component Analysis Regression (PCR) 
than on Multiple Linear Regression 
(MLR) and none on Classical Least 
Squares (CLS). This can be viewed as 
the opposite of the accepted wisdom of 
doing the easiest things first! This edition 
of the column is a partial redress of the 
admitted bias but also an explanation of 
why CLS is not often used in spectros-
copy. Some years ago1 an attempt was 
made to show the relationships of the 
first three of these methods which more 
recent followers of the column might 
like to read. The advantages and limita-
tions of each method are summarised 
in Table 1.

There have been some recent devel-
opments in the CLS method which may 

make it more applicable to spectroscopic 
data so you may see references and 
wonder why we had not mentioned it.

Classical least squares
The basic idea is that if you have the 
spectrum of a mixture and the spec-
tra of all the components, then you can 
compute the composition of the mixture. 
For this to work there are some important 
requirements: the system must be linear 
and additive (no interactions between 
the components), the component spec-
tra must be linearly independent and, for 
a perfect recovery of the composition, 
the system must be free of noise.

The theory in pictures
Figure 1 shows the “spectra” of three 
components, each one with a single 
Gaussian peak, and the spectrum of a 
mixture of the three in the proportions 
(0.5, 0.4, 0.1). All the spectra were 
created mathematically. The mixture 
spectrum in (d) was obtained by multi-
plying the spectra in (a), (b) and (c) by 
0.5, 0.4 and 0.1, respectively, and adding 

the results. If we have all these four spec-
tra, and we may assume that (d) was 
generated as a mixture in exactly this way 
but with unknown mixing proportions, 
then it is possible to recover the propor-
tions from the four spectra. Under some 
fairly mild conditions on the component 
spectra, there is one and only one set 
of proportions that could have given the 
spectrum in (d).

The mathematics
If we write the four spectra as column 
vectors of length q = 100, with s1, s2 
and s3 being the pure spectra and x the 
mixture spectrum, then the mixing corre-
sponds to

 x = c1·s1 + c2·s2 + c3·s3 (1)

where the scalars c1, c2 and c3 are the 
proportions of components 1, 2 and 3 
in the mixture.

Equation 1 has a matrix version. 
[Readers who are not conversant with 
matrix algebra might like to read our 
mini series on matrix algebra in earlier 
TD columns2–7 which are available on 
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Method Principle Advantages Disadvantages

CLS Addition of component spectra Intuitive Restricted by requirements

MLR Selection of a few measured variables 
to form a predictive equation

Easily comprehensible; very robust 
when applied to a few variables

Easily over-fitted when using a large 
number of variables and not many 
samples

PCR Computation of principal components 
(sources of variability in the data) 
followed by MLR on the PCs

Statistically sound, well researched; PCs 
can often be recognised; good results

More complex to understand, limited 
availability of good software

PLS Computation of new variables as a 
compromise between MLR and PCR to 
form a predictive equation

May give better results than PCR; excel-
lent software available

More complex than PCR to understand; 
requires careful validation

Table 1. Properties of different methods of regression analysis.
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The noisy case
If the system behaves as assumed, and 
there is no noise anywhere, Equation 
(3) recovers the exact proportions in the 
mixture. This is a calculation, not an esti-
mation. Alas, real systems have noise. 
Suppose we assume additive independ-
ent noise, so that Equation (1) becomes

x = Sc + e

This is the familiar linear model, with c 
playing the role of parameter vector, and 
Equation (3) is the equally familiar least 
squares estimate of c. Thus the formula 
does not change when we have a noisy 
system, but the result is now an estimate 
of the proportions in the mixture and not 
an exact calculation.

S are not linearly dependent, i.e. that no 
two of the three pure spectra are identi-
cal, nor can we get one of the three by 
mixing the other two. There is no require-
ment that peaks should not overlap—they 
overlap considerably in the example, to 
the extent that we only see two peaks 
in the mixture—merely that each pair of 
pure spectra must differ somewhere.

In fact we do not need the entire 
spectrum for this calculation. The spectra 
can be reduced to three spectral points, 
so long as the three reduced spectra still 
satisfy the condition of having no linear 
dependence between them. The tops of 
the three peaks would be fine, but so 
would most other choices that avoided 
the baseline.

the Spectroscopy Europe website.] If we 
make up the 100 × 3 matrix S = [s1 s2 s3] 
by putting the three pure component 
spectra together, and the 3 × 1 vector 
c = [c1 c2 c3]

T by putting the three propor-
tions together, then Equation 1 can be 
written

 x = Sc (2)

We know x and S here, and want to 
solve for c. If we multiply on both sides 
by the 3 × 100 matrix (STS)–1ST, then the 
result is

 c = (STS)–1STx (3)

For this to work, the matrix STS, which 
is 3 × 3, must have an inverse. The condi-
tion for this is that the three columns of 

Figure 1. Spectra of three pure components, (a)–(c), and a mixture of all three, (d). Copyright 2010 IM Publications LLP; reproduced with permis-
sion from NIR news 21(7), 16 (2010).
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paper by Mark et al.9 discusses the units 
for the concentrations that the mixture 
proportions represent (weight fraction? 
volume fraction? ...), something that is 
not important for the mathematics but 
is important in a real example and this 
needs to be taken seriously if you think 
that you have an example that fulfils the 
requirements.
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components be known. Interestingly, 
this need not involve measuring spec-
tra on the pure components them-
selves. The pure spectra can be inferred 
from measurements on a suitable set 
of mixtures with known proportions 
using the same sorts of ideas as those 
described above, but working the other 
way round. Unfortunately in many appli-
cations we are not even sure how many 
components there are in our mixture, 
let alone what their spectra might be. 
When working in reflectance mode, 
scatter effects are also a problem since 
the introduction of arbitrary multiplica-
tive factors into all the spectra rather 
spoils the maths.

For all these reasons, this approach 
in its simple form as presented above 
is not often useful for spectroscopy. So 
when colleagues ask you “Why don’t you 
use CLS?” you now know the answer! 
However, it can provide a starting point 
for more sophisticated approaches that 
may be useful in the future.

Reading more
There is a very detailed description of 
CLS, with two worked examples, in the 
chemometrics book by Beebe, Pell and 
Seasholtz.8 It is also explained there how 
the method can easily be extended to 
cope with variable linear baselines. The 

How good an estimate it is will depend 
on the amount of noise, and also on 
how distinct are the three pure spectra. 
The overlap between the peaks in (a) 
and (b) did not matter when there was 
no noise, but when there is noise this 
overlap will degrade the quality of the 
estimates to some extent. What happens 
in the matrix algebra is that the off-diago-
nal terms in STS get larger as the correla-
tions between the pure spectra increase. 
This makes the inverse less well-condi-
tioned, which in turn multiplies the noise 
up by larger factors in the calculations of 
Equation (3).

Now it is worth having more than three 
spectral points, since the surplus informa-
tion is essentially averaged in the estima-
tion procedure, reducing the noise in the 
result. Cutting off the spectra at about 
point 70 might just be worth it though: 
the flat baseline will only contribute its 
noise, and although the contribution will 
be small one might as well remove it.

The drawbacks
The reason this approach is rarely used 
in spectroscopy is that the assumptions 
of linearity and additivity are almost 
never satisfied, despite the habitual cita-
tion of Beer’s Law (especially in papers 
on NIR spectroscopy!). There is also the 
requirement that the spectra of the pure 
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