
So far our lessons in matrix algebra have covered matrix
addition, subtraction and multiplication. Why not matrix
division? Well the answer is that while you may divide a
matrix by a scalar (i.e. a single variable) you cannot divide a
matrix by another matrix. The solution is to remember that
an alterative method for doing scalar division is to calculate
the reciprocal of the denominator and then multiply it by the
numerator. If we could calculate the inverse of a matrix then
we would be able to do matrix division by a similar method.
With some limitations this can be done; the most important
limitation being that the matrix must be square. The arith-
metic required for inverting a matrix is relatively simple for a
2 × 2 matrix but it soon becomes quite heavy. Happily for us
there are efficient algorithms available which allow modern
personal computers to invert even large matrices in seconds.
The formula for a 2 × 2 matrix, B, can be written as:

where B-1 is the inverse of B.
It is obvious that the quantity (b1,1 × b2,2 – b1,2 × b2,1) must

not be equal to 0. Matrices with (b1,1 × b2,2 – b1,2 × b2,1) = 0
cannot be inverted.

An example:

These formulae can be deduced from the specification that,
in the same way that k × 1/k = 1, B × B–1 = I where I is the
identity matrix having values of 1 on its principal diagonal
and 0 elsewhere, i.e.

for a 2 × 2 matrix.

(Normally a multiplication sign is not written in matrix
algebra and we will not include them in the remainder of the
article.) However, note that MATLAB does require a * mul-
tiplication symbol.Thus the inverse of B is the matrix X
which satisfies the equations:

from our knowledge from Lesson 31 we can expand BX:

i.e.

wa + xc = 1 (1)

wb + xd = 0 (2)

if we multiply Equation (1) by d and Equation (2) by c then
we have:

wad + xcd = d (3)

wbc + xdc = 0 (4)

now subtract (4) from (3):

w(ad – bc) = d

w = d/(ad – bc)

if we substitute for w in Equation (2) we have:

db/(ad – bc) + xd = 0

xd = –db/(ad – bc)

x = –b/(ad – bc)

Similarly

ya + zc = 0

yb + zd = 1
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yad + zcd = 0

ybc + zdc = c

y(ad – bc) = –c

y = –c/(ad – bc)

yb + zd = 1

–cb/(ad – bc) + zd = 1

zd = 1 + cb/(ad – bc)

zd = (ad – bc + cb)/(ad – bc)

z = a/(ad – bc)

A demonstration of matrix 
inversion

We are going to demonstrate the use of matrix inversion to
solve a pair of simultaneous equations which is in the form of
the most simple multivariate calibration having just two vari-
ables and two components, (a 2 × 2 matrix).

This is historically important data because it has been used
by Harald Martens to explain multivariate calibrations for at
least 15 years but we acquired it from the www.wiley.
co.uk/chemometrics website where it is associated with the
new book by Harald and Magni Martens.2

The data is a small set of spectra of litmus solutions made
from various dilutions of an original litmus solution and at
varying pH. The spectra were measured at 8 nm intervals
from 416 to 792 nm and they are shown in Figure 1. Apart
from one neutral solution the others are either acidic (red) or
alkaline (blue). The problem is to be able to determine the
amount of litmus present irrespective of the pH.

If all solutions were either acidic or alkaline then we would
be able to write a Beer’s law equation:

a = bcd

where a is the absorption, b the absorption coefficient, c is the
concentration of the analyte and d the cell dimension; and a,

b, c, d have no connection to the previous arbitrary use of
these letters. For a unit length cell this can be re-written in
terms of concentration:

c = a/b

and this could be solved using the absorption at one wave-
length.

If we have two absorbing species then we need measure-
ments at least two wavelengths:

a1 = b1,1 × c1 + b1,2 × c2

a2 = b2,1 × c1 + b2,2 × c2

where a1, a2 are the absorptions at wavelengths 1 and 2; b1,1 is
the absorption coefficient for the first species at the first
wavelength, b2,1 is the absorption coefficient for the first
species at the second wavelength, b2,2 is the absorption coeffi-
cient for the second species at the second wavelength, and c1
and c2 are the concentrations of the first and second species.

The matrix form of this expression is:

a = Bc

which has the solution:

c = B–1a

Given absorption values at two wavelengths for one sam-
ple, and the matrix B of absorption coefficients, we could use
the above equation to estimate the concentrations of the two
species for that sample.  Given 19 such samples we could do
19 separate and very similar calculations.  However, it is
more efficient (and more fun) to do what MATLAB users
call “vectorising” the equations. Notice that all of them
involve exactly the same B matrix, so if we put the 19 2 × 1
column vectors of absorptions side by side to make a 2 × 19
matrix A, and put all the (unknown) concentrations side by
side to make another 2 × 19 matrix C, we can write all 19
equations at once as

A = BC

which has the solution:

C = B–1A (5)

Our data has measurements at 48 wavelengths and so we
will calculate absorption coefficients at every wavelength
using both the nine blue samples and the nine red samples.
Then we will chose likely wavelengths to put into Equation
5.

Here is the MATLAB program with instructions in red
and program comments in green.
% LitmusB

% Demonstrates inversion of B coefficients

% Data from Harald Martens

load litmus2

a=S_V(:,2:49); % the absorption data

c=S_V(:,1); % the litmus concentration data

w=[416:8:792]; % wavelength range

% these are the blue ones

cb=c(1:9);

ab=a(1:9,:);

% these are the red ones

cr=c([10:16 18 19]);

ar=a([10:16 18 19],:);

% this is the purple one

cp=c(17);

ap=a(17,:);

% Look at the data
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Figure 1. Spectra of 19 litmus solutions from
Reference 2.



figure

plot(w,ab’,’b’)

hold on

plot(w,ar’,'r')

plot(w,ap’,'m')

xlabel('Wavelength, nm')

ylabel('Absorption, Log1/T')

hold off

pause

% Estimate absorption coefficients by a least
% squares regression

% THIS WILL BE EXPLAINED ON ANOTHER OCCASION

bcoefb=cb’*ab/(cb’*cb);

bcoefr=cr’*ar/(cr’*cr);

This might look like a matrix division but cb and cr are
9 × 1 so cb′ + cb is a scalar
% bcoef is 48 * 2, has coeffs by wavelength 
% for blue in col 1,

% red in col 2, estimated by regression
% through the origin

bcoef=[bcoefb’ bcoefr’];

%look at coeffs

figure % this is Figure 2

plot(w,bcoefb)

hold on

plot(w,bcoefr,'r')

xlabel('Wavelength, nm')

ylabel('Absorption coefficient')

hold off

pause

% pick the wavelengths at the top of the peaks
% and try

w1=10; % 488 nm

ww1=416+(w1-1)*8

w2=20; % 568 nm

ww2=416+(w2-1)*8

% B is 2 x 2, with row 1 having the coeffs for
% blue, red

% at wavelength w1, row 2 at wavelength w2

B=bcoef([w1 w2],:);

% A is 2 x 19, it has the absorbancies at the
% two wavelengths

% for all 19 samples

A=a(:,[w1 w2])’;

% solve the equation BC=A

% NOW WE DO THE INVERSION!!

C=inv(B)*A;

This simple instruction actually solves 19 sets of simultane-
ous equations at once! 
% C has est blue, red in cols 1,2

% it isn’t bad! 

s=sum(C)’;

e=c-s;

[c C’ s e]; % this prints the results

%Actual, est blue, est red, total, error

The results are given in Table 1
These results are reasonable considering the assumption

that the absorptions are linear over the concentration range.
Although there are some quite large errors it is pleasing to see
that the purple sample is estimated reasonably satisfactorily
even though it could not be used in the estimation of the
absorption coefficients.

In our next lesson we will consider how this data could be
used more effectively, while learning more about the intrica-
cies of matrix algebra.
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% Litmus Blue Red Total Error Comment
components

100 94.2 2.9 97.0 3.0

100 96.2 4.9 101.1 –1.1

93 90.5 –1.3 89.1 3.9

83.5 84.2 –1.0 83.2 0.3

67 74.3 –4.9 69.3 –2.3

50 57.2 –3.4 53.8 –3.8

33 40.1 –1.8 38.3 –5.3

16.5 20.1 –0.7 19.4 –2.9

0 0.8 1.9 2.8 –2.8

0 0.1 0.4 0.6 –0.6

16.5 0.2 18.4 18.5 –2.0

33 –0.5 34.8 34.3 –1.3

33 –0.7 34.0 33.3 –0.3

50 –1.0 50.9 49.9 0.1

67 –0.5 65.7 65.3 1.7

67 –1.3 67.7 66.4 0.6

95 33.4 63.9 97.3 –2.3 Purple

97 3.3 94.7 98.0 –1.0

100 –1.2 100.9 99.7 0.3

Table 1. Results for the prediction of litmus compo-
nents using absorption data at 488 and 568 nm.

Figure 2. Variation of absorption coefficients with
wavelength for the red and blue forms of litmus.


