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Introduction
Modern bioreactors are an excellent solu-
tion to many problems facing our society 
today. Anaerobic digesters, for example, 
not only provide a solution for the safe 
disposal of the mountains of waste and 
sludge we produce but also have the 
potential to provide substantial amounts 
of energy and fertiliser as the end prod-
ucts.1

The waste breakdown means that the 
solids content is significantly lower at 
the end of the process and the smells 
normally associated with sewage sludge 
are removed. They are also far cheaper to 
run than the equivalent aerobic digestion 
solutions such as composting. Recent 
legislation has also led to a search for 
other solutions to the disposal of vari-
ous waste streams other than in landfill 
or burning.

Although the promise of this tech-
nology is clear and anaerobic digesters 
have been widely deployed especially 
across continental Europe, Mencken’s old 
adage “There is always an easy solution 
to every human problem—neat, plau-
sible, and wrong” holds very true here. 
This issue’s column reports on some 
recent work by a multi-disciplinary team 
quantifying the capability of near infra-
red (NIR) spectroscopy in extensively 
and successfully getting to grips with the 
complex problem of optimising anaero-
bic digestion operation.2 To make their 
investigation more difficult they ruled 
out any sort of off-line or near-line pre-
treatment of the samples and ran three 
bioreactors together to obtain data that 
could be used to see if the underlying 

data could be used to generate predic-
tive and closed-loop control models that 
would be generally applicable rather then 
being restricted to the individual reactors 
(see Figure 1).

Defining the problem
Anaerobic digestion is, in itself, a complex 
multi-step process using a combination 
of bacteria. The reactors studied were 
single-stage reactors operating in semi-
continuous flow mode in which at least 
four groups of bacteria carry out different 
tasks and need to be kept in balance. It 
is the complex equilibrium that the team 
were interested in measuring and moni-
toring with a view to assessing the feasi-
bility of implementing more intelligent 

closed-loop bioreactor control mecha-
nisms.

At a high level, the equilibria can be 
described as follows. Initially bacterial 
hydrolysis breaks down the large organic 
polymers to sugars and amino acids, 
which the acidogenic bacteria convert 
into carbon dioxide, hydrogen, ammonia 
and organic acids. The acetogenic bacteria 
convert the organic acids into acetic acid, 
ammonia, hydrogen and carbon dioxide, 
and methanogenic bacteria complete the 
digestion to methane and carbon dioxide 
(see Figure 2).

Reactors can be designed to run in 
both batch and continuous flow modes. 
In continuous flow reactors the opera-
tors need to balance the inputs with the 
capabilities of the bacteria populations to 
digest what they are being fed or else 
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Figure 2. High-level flowchart showing the 
different stages of anaerobic digestion as well 
as the products and intermediates.

Figure 1. Research anaerobic digesters of 
the type used in this study.
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trouble starts—just as in humans! A typi-
cal failure of the loading control can lead 
to the acetogenic and methanogenic 
bacteria not coping with the amounts of 
volatile fatty acid (VFA) being presented 
to them by the acidogenic bacteria step. 
The ensuing build up of VFAs leads to 
a drop in the bicarbonate alkalinity (BA) 
and the pH further inhibiting the func-
tioning of the methanogens. This then 
becomes a vicious circle leading to a 
collapse of the process and the death of 
the reactor’s microbial populations.

Existing monitoring
Currently the majority of deployed anaer-
obic digesters use an extremely limited 
set of monitoring sensors commonly 
logging only temperature and gas flows. 
Occasionally, the gas quality is measured 
on-site but any data on the biochemi-
cal processes themselves are restricted 
to lab-based digestate or reactor content 
sampling and measurement carried out 
intermittently and off-line.

This lack of reliable data on the exact 
state of the bioreactor, and the risks asso-
ciated with tipping the equilibria of the 
bacterial populations into the collapse of 
the process, mean that normally anaero-
bic digesters are run very conservatively 
and inefficiently. If a better inline moni-
toring system could be proven to deliver 
the required performance information 
in a timely and robust manner these 
digesters could run far more efficiently 
and cost-effective manner with increased 
throughput.

Many studies have looked at anaero-
bic digester monitoring over the years 
but the complex nature of the problem 
with widely varying input parameters 
and loading rates have made it difficult 
to produce models that are capable of 
robustly following the wide variety of 
parameters needing monitoring if closed-
loop control is to be implemented.

Near infrared 
 spectroscopy
Near infrared spectroscopy has been 
reported many times in Spectroscopy 
Europe as a tool of choice in many 
analytical areas. It can be typically found 
working as a standard process analysis 
tool in the pharmaceutical and espe-
cially the food industries. Deployment in 
anaerobic digesters is somewhat more 
complicated due to the relatively low 
amounts of solids in the sample that 
has led to earlier studies concentrating 
on batch sampling often in association 
with sample drying as preparation steps 
before the spectroscopy is attempted. 
For the development of a closed-loop 
control, this is obviously undesirable.

Three optical geometries have been 
compared in the past for online meas-
urements: transmission, transflexion 
and reflection. As an academic exercise, 
clearly, the transmission cell delivers the 
best results but for the matrices under 
investigation significant sample treatment 
or filtering is required. Unfortunately, if 
the technology is to be deployed straight 
into the bioreactor without altering the 

sample being observed it requires the 
reflectance probe to be used.

The study reported here looked at 
standard reflectance probes as the most 
practical solution for the environment 
around the anaerobic digesters and 
looked at bioreactor control as well as 
feedstock management.

The instrument deployed here was 
a PerkinElmer 100N spectrometer 
fitted with a Near Infrared Reflectance 
Accessory (NIRA). Samples were scanned 
over the range of 4000–12,000 cm–1 
at 16 cm–1 resolution, 250 scans signal 
averaged.

The anaerobic digesters
Three 20 L scale anaerobic digesters 
were operated using mixtures of primary 
and activated sewage sludges typical of 
those found in the wastewater industry. 
The mixture of primary and waste acti-
vated sludge (WAS) was roughly 70 : 30 
and the total solids ~5% after water 
make-up.

Reference data was obtained off-line 
for total solids (TS), volatile fatty acids 
(VFA), bicarbonate alkalinity (BA) and 
volatile solids (VS) and spectroscopic 
data collected to match the reference 
sampling time points. The three reactors 
were run for a total of 57 days.

The feedstock analysis was carried out 
on mixtures of primary and activated 
sludges but varying the proportion of 
primary to activated sludge from 0% to 
100% whilst maintaining a total solids 
content of 5% (see Figure 3).
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Figure 2. Near-infrared spectra of the various feedstock mixtures  
from pure primary to pure waste activated sludge. All samples at 5% total solids. 
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Data Analysis 

A principal component analysis was carried out on the data from reactor one looking at the 

reactor under varying operating conditions. The reactor was started using the standard 70:30 

primary to activated sewage sludge ratio at a safe mean organic loading rate of 2.6 g volatile 

solids per litre which yielded a hydraulic retention time of 15 days and a temperature of 

35 °C The. These conditions (OC1 and OC3) were the steady-state conditions that were 

returned to after each perturbation. 

To simulate the arrival of differing feedstocks and their effect on the reactor the loading was 

switched to pure activated sludge at a loading rate mean of 2.8 for days 12 and 13 and the 

dramatic effect can be seen in the OC2 plots in figure 3. 

The reactor was then allowed to return to steady state conditions (OC3-5: days 14-39) 

before perturbations effects of temperature (OC6: days 40-49) as well as loading rates and 

retention times (OC7: days 50-54, OC8: days 55-57) were carried out until the reactor died. 
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Figure 3. Principal component analysis used to demonstrate 
 the capability of the FT-NIR data to track various induced reactor perturbations  

over 57 days. 
 

This PCA analysis clearly demonstrated the capability of the FT-NIR to follow reactor 

changes and therefore to be used in reactor monitoring and early warning of deviations from 

the steady state. The ability to carry out measurements which would add to the diagnosis of 

Figure 3. Near infrared spectra of the various feedstock mixtures from 
pure primary to pure waste activated sludge. All samples at 5% total 
solids.

Figure 4. Principal component analysis used to demonstrate the capa-
bility of the NIR data to track various induced reactor perturbations over 
57 days.
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eration as well as the model for monitoring 
the proportion of activated sludge.

Figure 5 shows the results of the different 
calibrations for the analytes under consid-

Data analysis
Principal component analysis (PCA) was 
carried out on the data from reactor one 
looking at the reactor under varying oper-
ating conditions. The reactor was started 
using the standard 70 : 30 primary to 
activated sewage sludge ratio at a safe 
mean organic loading rate of 2.6 g volatile 
solids per litre which yielded a hydraulic 
retention time of 15 days and a tempera-
ture of 35°C. These conditions (OC1 and 
OC3) were the steady-state conditions 
that were returned to after each pertur-
bation (see Figure 4).

To simulate the arrival of differing feed-
stocks and their effect on the reactor, the 
loading was switched to pure activated 
sludge at a loading rate mean of 2.8 for 
days 12 and 13 and the dramatic effect 
can be seen in the OC2 plots in Figure 
4.

The reactor was then allowed to 
return to steady state condit ions 
(OC3–5: days 14–39) before pertur-
bations effects of temperature (OC6: 
days 40–49) as well as loading rates 
and retention times (OC7: days 50–54, 
OC8: days 55–57) were carried out 
until the reactor died.

This PCA analysis clearly demonstrated 
the capability of NIR to follow reactor 
changes and therefore to be used in 
reactor monitoring and to provide early 
warning of deviations from the steady 
state. The ability to carry out measure-
ments which would add to the diagno-
sis of problems with the reactor allowing 
for appropriate counter-measures to be 
initiated to avoid reactor failure or simply 
to operate the reactor more efficiently 
in a closed-loop control would be more 
useful.

To investigate if NIR spectroscopy 
could also operate in this role calibrations 
were carried out based on the spectra 
obtained over the 57 days from two of 
the reactors and the calibration refer-
ence values listed above. The partial least 
squares (PLS) calibrations were validated 
not by cross validation within the refer-
ence data sets but by full independent 
validation using the data from the third 
reactor. This gave a much better feel for 
the robustness and transferability of the 
calibrations between different bioreactor 
vessels.
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Figure 5. Partial Least Squares analysis used to demonstrate the capability of the NIR data to 
track various induced reactor perturbations over 57 days as well as predict well the feedstock acti-
vated sludge proportion. The green data is for reactor 1, red for reactor two and black for reactor 3.
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of concentrations calibrated against but 
this would have take the reactor matrix 
well outside its normal operating range 
and as such would have only artificially 
enhanced the statistical data without 
really providing any realistic improvement 
of the understanding of the robustness 
of the method.
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Results and conclusions
Within the bounds of the aims of this 
work Figure 5 clearly shows the capa-
bilities of NIR spectroscopy to follow the 
varying analyte concentrations within the 
bioreactor during perturbation. Figure 6 
shows exactly this tracking over time for 
reactor one for total and volatile solids, 
VFAs and bicarbonate alkalinity.

Obviously, there are more accurate 
laboratory methods of quantitatively 
determining the exact concentrations of 
the various analytes but the validation of 
the models shows that it is possible to 
follow the trends in the concentrations 
of the various analytes across different 
reactors using the less spectroscopically 
favourable, but more process-applicable 
reflection NIR techniques. Better corre-
lations could have been achieved by 
doping the samples to broaden the range 
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Figure 4. Partial Least Squares analysis used to demonstrate 

 the capability of the FT-NIR data to track various induced reactor perturbations  

over 57 days as well as predict well the feedstock activated sludge proportion. The green 

data is for reactor 1, red for reactor two and black for reactor 3. 
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Figure 5. Application of the PLS model to tracking the reactor analyte concentrations in real 

time. This data is from reactor one, the solid line is the measured value and the 

dashed line the predicted value. The scale on the top of the figure indicates the 

different operating condition periods. 

Figure 6. Application of the PLS model to tracking the reactor analyte concentrations in real 
time. This data is from reactor one, the solid line is the measured value and the dashed line the 
predicted value. The scale on the top of the figure indicates the different operating condition 
periods.


